Sains Malaysiana 54(1)(2025): 313-323

http://doi.org/10.17576/jsm-2025-5401-25

 

A Ratio-Type Weighted Geometric Distribution for Modelling Overdispersed Count Data

(Taburan Geometri Berpemberat Jenis Nisbah untuk Memodelkan Data Bilangan Terlebih Serakan)

 

SHIN ZHU SIM1, HASSAN S. BAKOUCH2,3, RAZIK RIDZUAN MOHD TAJUDDIN4,* & ULYA ABDUL RAHIM5

 

1School of Mathematical Sciences, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
2Department of Mathematics, College of Science, Qassim University, Buraydah, Saudi Arabia
3Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
4Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
5Deanery Office, Faculty of Medicine, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 11 Jun 2024/Diterima: 7 Oktober 2024

 

Abstract

Weighted distributions have always been a popular approach in developing flexible distributions for data modelling. In this paper, we introduce a flexible ratio-type weighted geometric distribution by adopting the geometric distribution as a basic standard distribution and opting for weights, represented as . The proposed distribution is overdispersed and is capable of accommodating data with small mode values such as 0, 1 and 2. The proposed distribution has the following properties – unimodal, log-concave and has increasing failure rates. The moment estimator is obtained, and the resulting estimated parameter is utilized as the initial point in finding the estimators based on the maximum likelihood technique and probability generating function. A probability comparison between the typical geometric distribution and the proposed distribution is discussed as well. A collection of insurance claim datasets is utilized for model fitting, and it was found out that generally, the proposed distribution can adequately fit the datasets as opposed to other contending distributions.

 

Keywords: Discrete distributions; estimation geometric; simulation; weights

 

Abstrak

Taburan berpemberat selalu menjadi pendekatan yang popular dalam mengembangkan taburan fleksibel untuk pemodelan data. Dalam kajian ini, kami memperkenalkan taburan geometrik berpemberat jenis nisbah yang fleksibel dengan mengambil kira taburan geometrik sebagai taburan piawai asas dan memilih berat, yang diwakili sebagai . Taburan yang dicadangkan adalah terlebih serak dan mampu mengendalikan data dengan nilai mod kecil seperti 0, 1 dan 2. Taburan yang dicadangkan mempunyai sifat berikut – unimodal, log-cekung dan mempunyai kadar kegagalan yang meningkat. Penganggar momen diperoleh, dan parameter yang dianggarkan digunakan sebagai titik permulaan dalam mencari penganggar berdasarkan teknik kebolehjadian maksimum dan fungsi penjana kebarangkalian. Perbandingan kebarangkalian antara taburan geometrik biasa dan taburan yang dicadangkan turut dibincangkan. Koleksi set data tuntutan insurans digunakan untuk pemodelan dan didapati bahawa secara umum, taburan yang dicadangkan dapat memadankan set data dengan baik berbanding taburan lain yang dipertimbangkan.

 

Kata kunci: Geometrik; pemberat; penganggaran; simulasi; taburan diskret

 

RUJUKAN

Almuhayfith, F.E., Bapat, S.R., Bakouch, H.S. & Alnaghmosh, A.M. 2023. A flexible semi-Poisson distribution with applications to insurance claims and biological data. Mathematics 11(5): 1-15.

Bakouch, H.S. 2018. A weighted negative binomial Lindley distribution with applications to dispersed data. Anais da Academia Brasileira de Ciências 90: 2617-2642.

Bhati, D. & Joshi, S. 2018. Weighted geometric distribution with new characterizations of geometric distribution. Communications in Statistics-Theory and Methods 47(6): 1510-1527.

Del Castillo, J. & Pérez-Casany, M. 1998. Weighted Poisson distributions for overdispersion and underdispersion situations. Annals of the Institute of Statistical Mathematics 50: 567-585.

Fisher, R.A. 1934. The effect of methods of ascertainment upon the estimation of frequencies. Annals of Eugenics 6(1): 13-25.

Gómez-Déniz, E. & Calderín-Ojeda, E. 2011. The discrete Lindley distribution: Properties and applications. Journal of Statistical Computation and Simulation 81(11): 1405-1416.

Gossiaux, A.M. & Lemaire, J. 1981. Méthodes d’ajustement de distributions de sinistres. Bulletin of the Association of Swiss Actuaries 81: 87-95.

Gupta, R.D. & Kundu, D. 2009. A new class of weighted exponential distributions. Statistics 43(6): 621-634.

Patil, G.P. 1991. Encountered data, statistical ecology, environmental statistics, and weighted distribution methods. Environmetrics 2(4): 377-423.

Patil, G.P. & Rao, C.R. 1978. Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics 34(2): 179-189.

Puig, P., Valero, J. & Fernández‐Fontelo, A. 2024. Some mechanisms leading to underdispersion: Old and new proposals. Scandinavian Journal of Statistics 51(1): 245-267.

Rao, C.R. 1965. On discrete distributions arising out of methods of ascertainment. Sankhyā: The Indian Journal of Statistics, Series A 27(2/4): 311-324.

Ridout, M.S. & Besbeas, P. 2004. An empirical model for underdispersed count data. Statistical Modelling 4(1): 77-89.

Sim, S.Z. & Ong, S.H. 2010. Parameter estimation for discrete distributions by generalized Hellinger-type divergence based on probability generating function. Communications in Statistics - Simulation and Computation 39(2): 305-314.

Tajuddin, R. R. M. & Ismail, N. 2023. A New One-Parameter Size-Biased Poisson Distribution for Modelling Underdispersed Count Data. Malaysian Journal of Fundamental and Applied Sciences 19(2)1: 64-172.

 

*Pengarang untuk surat-menyurat; email: rrmt@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

sebelumnya